JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Bioresorbable Scaffolds for Coronary Stenosis: When and How Based Upon Current Studies.

PURPOSE OF REVIEW: First-generation bioresorbable scaffolds (BRS), largely represented by the poly-l-lactic acid (PLLA) ABSORB (Abbott Vascular, Temecula, Illinois, US), have demonstrated, in low to moderate lesion complexity, similar efficacy to current generation metallic drug-eluting stents. However, a trend toward more device thrombosis has been observed, especially when the scaffolds are used in off-label situations. In this review, we address the most relevant drawbacks of these devices and, based on the available scientific data, we visit the scenarios where there is more uncertainty about their indication, trying to identify the lesions/patients to whom this technology should be voided at its current stage of development.

RECENT FINDINGS: Based on available data from randomized trials and observational real world registries, the use of first generation BRS has been associated with a trend to higher acute/subacute thrombosis rate, which might be partially explained by the peculiarities related to their deployment technique, such as the need for precise vessel sizing and caution on post-dilation. Special attention should be paid when using these devices to treat small coronary arteries (<2.5 mm), long lesions requiring overlapping, and patients with acute coronary syndrome, in particular those with ST-segment elevation myocardial infarction (STEMI). Finally, the role of these devices is still uncertain in more complex lesion anatomies such as bifurcations, ostial lesions, etc. Although based on attractive clinical premises, the current indications of BRS are still limited by significant drawbacks observed in the first generation of these devices. Of note, new generation scaffolds are currently in preclinical and clinical evaluation and present features that might surpass most of these limitations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app