Add like
Add dislike
Add to saved papers

Inhibition of Calcineurin A by FK506 Suppresses Seizures and Reduces the Expression of GluN2B in Membrane Fraction.

FK506, a calcineurin inhibitor, shows neuroprotective effects and has been associated with neurodegenerative diseases. Calcineurin A (CaNA), a catalytic subunit of calcineurin, mediates the dephosphorylation of various proteins. N-methyl-D-aspartate receptor (GluN) is closely related to epileptogenesis, and various phosphorylation sites of GluN2B, a regulatory subunit of the GluN complex, have different functions. Thus, we hypothesized that one of the potential anti-epileptic mechanisms of FK506 is mediated by its ability to promote the phosphorylation of GluN2B and reduce the expression of GluN2B in membrane fraction by down-regulating CaNA. CaNA expression was increased in the cortex of patients with temporal lobe epilepsy and pentylenetetrazol (PTZ)-induced epileptic models. CaNA was shown to be expressed in neurons using immunofluorescence staining. According to our behavioral observations, epileptic rats exhibited less severe seizures and were less sensitive to PTZ after a systemic injection of FK506. The levels of phosphorylated GluN2B were decreased in epileptic rats but increased after the FK506 treatment. Moreover, there was no difference in the total GluN2B levels before and after FK506 treatment. However, the expression of GluN2B in membrane fraction was suppressed after FK506 treatment. Based on these results, FK506 may reduce the severity and frequency of seizures by reducing the expression of GluN2B in membrane fraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app