Add like
Add dislike
Add to saved papers

Methyl caffeate and some plant constituents inhibit age-related inflammation: effects on senescence-associated secretory phenotype (SASP) formation.

During aging, cells secrete molecules called senescence-associated secretory phenotype (SASP). They constitute chronic low-grade inflammation environment to adjacent cells and tissues. In order to find inhibiting agents of SASP formation, 113 plant constituents were incubated with BJ fibroblasts for 6 days after treatment with bleomycin. Several plant constituents showed considerable inhibition of IL-6 production, a representative SASP marker. These plant constituents included anthraquinones such as aurantio-obtusin, flavonoids including astragalin, iristectorigenin A, iristectorigenin B, linarin, lignans including lariciresinol 9-O-glucoside and eleutheroside E, phenylpropanoids such as caffeic acid and methyl caffeate, steroid (ophiopogonin), and others like centauroside, rhoifolin and scoparone. In particular, methyl caffeate down-regulated SASP factors such as IL-1α, IL-1β, IL-6, IL-8, GM-CSF, CXCL1, MCP-2, and MMP-3. Inhibition of these SASP mRNA expression levels also coincided with the reduction of IκBζ expression and NF-κB p65 activation without affecting the expression levels of senescence markers, p21 or pRb. Taken together, the present study demonstrated that methyl caffeate might be a specific and strong inhibitor of SASP production without affecting the aging process. Its action mechanisms involve the reduction of IκBζ expression and NF-κB p65 activation. Therefore, this compound might be effective in alleviating chronic low-grade inflammation linked to age-related degenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app