Add like
Add dislike
Add to saved papers

Optimization of additive content and their combination to improve the quality of pure barley bread.

The objective of this study was to model the influence of pregelatinized OSA starch (OSA), wheat gluten (Gl) and xylanase (Xyl) on breadmaking potential of barley flour by using response surface methodology. Addition of these ingredients had significant effect on specific bread volume, crust and crumb lightness, crumb texture, average cell size and crumb density. OSA showed the most pronounced effect on specific bread volume, average cell size, crumb density and hardness. Interaction between OSA and Gl, as well as Gl and Xyl, respectively, increased and decreased the specific bread volume and crumb chewiness, while the interaction between OSA and Xyl decreased the specific volume decrease and increased crumb chewiness. An optimal barley bread formulation appeared to be the one containing 9.68% OSA, 2.0% Gl and 4.51 g/100 kg Xyl. This optimal barley bread formulation predicted an increment of 14-28% in volume and a decrease of 105-217% in crumb chewiness in comparison to formulations containing medium amounts of improvers (1% Gl, 5% OSA, 2.5 g/100 kg Xyl).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app