Add like
Add dislike
Add to saved papers

Scaling of velocity and scalar structure functions in ac electrokinetic turbulence.

Physical Review. E 2017 Februrary
Electrokinetic (EK) turbulence or electrohydrodynamic (EHD) turbulence has been recently achieved in different fluids under both ac [G. Wang et al., Lab Chip 14, 1452 (2014)10.1039/C3LC51403J; Phys. Rev. E 93, 013106 (2016)10.1103/PhysRevE.93.013106] and dc electric fields [A. Varshney et al., Soft Matter 12, 1759 (2016)10.1039/C5SM02316E]. Here, through dimensional analysis, scaling laws of both velocity and electric conductivity structure functions in the forced cascade region of ac EK turbulence can be predicated (similar to Bolgiano-Obukhov scaling law in turbulent Rayleigh-Bénard convection), in either macroscale or microscale flows. In the forced cascade region, EK force, which relies on the direct cascade of conductivity structures, injects energy directly into a wide spectral region to sustain the flow disturbance. The scaling exponents of the second-order velocity and conductivity structures are 2/5 and 4/5, respectively. In addition to the scaling regions, two characteristic small length scales are derived for both weak and strong electric body forces, respectively. This theoretical investigation can significantly enhance our understanding of EK or EHD turbulence while forced by an ac electric field. It can further broaden our understanding of the forced cascade region of forced turbulence and make the manipulation of the turbulent cascade process more flexible and controllable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app