Add like
Add dislike
Add to saved papers

Thermodynamics of a one-dimensional self-gravitating gas with periodic boundary conditions.

Physical Review. E 2017 Februrary
We study the thermodynamic properties of a one-dimensional gas with one-dimensional gravitational interactions. Periodic boundary conditions are implemented as a modification of the potential consisting of a sum over mirror images (Ewald sum), regularized with an exponential cutoff. As a consequence, each particle carries with it its own background density. Using mean-field theory, we show that the system has a phase transition at a critical temperature. Above the critical temperature the gas density is uniform, while below the critical point the system becomes inhomogeneous. Numerical simulations of the model, which include the caloric curve, the equation of state, the radial distribution function, and the largest Lyapunov exponent, confirm the existence of the phase transition, and they are in good agreement with the theoretical predictions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app