Add like
Add dislike
Add to saved papers

Driven inelastic Maxwell gas in one dimension.

Physical Review. E 2017 Februrary
A lattice version of the driven inelastic Maxwell gas is studied in one dimension with periodic boundary conditions. Each site i of the lattice is assigned with a scalar "velocity," v_{i}. Nearest neighbors on the lattice interact, with a rate τ_{c}^{-1}, according to an inelastic collision rule. External driving, occurring with a rate τ_{w}^{-1}, sustains a steady state in the system. A set of closed coupled equations for the evolution of the variance and the two-point correlation is found. Steady-state values of the variance, as well as spatial correlation functions, are calculated. It is shown exactly that the correlation function decays exponentially with distance, and the correlation length for a large system is determined. Furthermore, the spatiotemporal correlation C(x,t)=〈v_{i}(0)v_{i+x}(t)〉 can also be obtained. We find that there is an interior region -x^{*}<x<x^{*}, where C(x,t) has a time-dependent form, whereas in the exterior region |x|>x^{*}, the correlation function remains the same as the initial form. C(x,t) exhibits second-order discontinuity at the transition points x=±x^{*}, and these transition points move away from the x=0 with a constant speed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app