Add like
Add dislike
Add to saved papers

Dynamical and structural properties of a granular model for a magnetorheological fluid.

Physical Review. E 2017 Februrary
We study a two-dimensional nonvibrating granular system as a model of a magnetorheological fluid. The system is composed of magnetic steel particles on a horizontal plane under a vertical sinusoidal magnetic field and a horizontal static magnetic field. When the amplitude of the horizontal field is zero, we find that the motion of the particles has characteristics similar to those of Brownian particles. A slowing down of the dynamics is observed as the particle concentration increases or the magnitude of the vertical magnetic field decreases. When the amplitude of the horizontal field is nonzero, the particles interact through effective dipolar interactions. Above a threshold in the amplitude of the horizontal field, particles form chains that become longer and more stable as time increases. For some conditions, at short time intervals, the average chain length as a function of time exhibits scaling behavior. The chain length distribution at a given time is a decreasing exponential function. The behavior of this granular system is consistent with theoretical and experimental results for magnetorheological fluids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app