Add like
Add dislike
Add to saved papers

Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma.

Physical Review. E 2017 Februrary
Electrons can be efficiently injected into a plasma wave by colliding two counterpropagating laser pulses in a laser wakefield acceleration. However, the generation of a high-quality electron beam with a large charge is difficult in the traditional on-axis colliding scheme due to the growth of the electron beam duration coming from the increase of the beam charge. To solve this problem, we propose an off-axis colliding scheme, in which the collision point is away from the axis of the driver pulse. We show that the electrons injected from the off-axis region are highly concentered on the tail of the bubble even for a large trapped charge, thus feeling almost the same accelerating field. As a result, quasimonoenergetic electron beams with a large charge can be produced. The validity of this scheme is confirmed by both the particle-in-cell simulations and the Hamiltonian model. Furthermore, it is shown that a Laguerre-Gauss (LG) laser can be adopted as the injection pulse to realize the off-axis colliding injection in three dimensions symmetrically, which may be useful in simplifying the technical layout of the real experiment setup.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app