Add like
Add dislike
Add to saved papers

The Long-Chain Sphingoid Base of Ceramides Determines Their Propensity for Lateral Segregation.

Biophysical Journal 2017 March 15
We examined how the length of the long-chain base or the N-linked acyl chain of ceramides affected their lateral segregation in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Lateral segregation and ceramide-rich phase formation was ascertained by a lifetime analysis of trans-parinaric acid (tPA) fluorescence. The longer the length of the long-chain base (d16:1, d17:1, d18:1, d19:1, and d20:1 in N-palmitoyl ceramide), the less ceramide was needed for the onset of lateral segregation and ceramide-rich phase formation. A similar but much weaker trend was observed when sphingosine (d18:1)-based ceramide had N-linked acyl chains of increasing length (14:0 and 16:0-20:0 in one-carbon increments). The apparent lateral packing of the ceramide-rich phase, as determined from the longest-lifetime component of tPA fluorescence, also correlated strongly with the long-chain base length, but not as strongly with the N-acyl chain length. Finally, we compared two ceramide analogs with equal carbon numbers (d16:1/17:0 or d20:1/13:0) and observed that the analog with a longer sphingoid base segregated at lower bilayer concentrations to a ceramide-rich phase compared with the shorter sphingoid base analog. The gel phase formed by d20:1/13:0 ceramide also was more thermostable than the gel phase formed by d16:1/17:0 ceramide. 2 H NMR data for 10 mol % stearoyl ceramide in POPC also showed that the long-chain base was more ordered than the acyl chain at comparable chain positions and temperatures. We conclude that the long-chain base length of ceramide is more important than the acyl chain length in determining the lateral segregation of the ceramide-rich gel phase and intermolecular interactions therein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app