Add like
Add dislike
Add to saved papers

Inhibitory Mechanism of Epigallocatechin Gallate on Fibrillation and Aggregation of Amidated Human Islet Amyloid Polypeptide.

The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) is associated with development of type II diabetes mellitus (T2DM). (-)-Epigallocatechin gallate (EGCG) can bind amyloid proteins to inhibit the fibrillation of these proteins. However, the mechanic detail of EGCG inhibiting amyloid formation is still unclear at the molecular level. In the present work, we sought to investigate the effect of EGCG on amidated hIAPP (hIAPP-NH2 ) fibrillation and aggregation by using spectroscopic and microscopic techniques, and also sought to gain insights into the interaction of EGCG and hIAPP22-27 by using spectroscopic experiments and quantum chemical calculations. ThT fluorescence, real-time NMR, and TEM studies demonstrated that EGCG inhibits the formation of hIAPP-NH2 fibrils, while promoting the formation of hIAPP-NH2 amorphous aggregates. Phenylalanine intrinsic fluorescence and NMR studies of the EGCG/hIAPP22-27 complex revealed three important binding sites including the A ring of EGCG, residue Phe23, and residue Ile26. DFT calculations identified the dominant binding structures of EGCG/Phe23 and EGCG/Ile26 complexes, named structure I and structure II, respectively. Our study demonstrates the inhibitory mechanism of EGCG on fibrillation and aggregation of hIAPP-NH2 in which EGCG interacts with hIAPP-NH2 through hydrogen bonding and π-π interactions between the A ring and residue Phe23 as well as hydrophobic interactions between the A ring and residue Ile26, which can thus inhibit the interpeptide interaction between hIAPP-NH2 monomers and finally inhibit fibrillation of hIAPP-NH2 . This study agrees with and reinforces previous studies and offers an intuitive explanation at both the atomic and molecular levels. Our findings may provide an invaluable reference for the future development of new drugs in the management of diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app