Add like
Add dislike
Add to saved papers

Enhanced SOCS3 in osteoarthiritis may limit both proliferation and inflammation.

Osteoarthritis (OA) is a degenerative joint disease that is characterized by localized inflammatory and secondary proliferative changes. Suppressor of cytokine signaling 3 (SOCS3) is elevated during OA development. We investigated the effects of this protein on human chondrocyte survival in OA and the inflammatory response together with the mechanisms of these effects. Small interfering RNA (siRNA) was used to knock down the expression of SOCS3 in interleukin(IL)-1β-induced primary human osteoarthritic chondrocytes. We found that siRNA-mediated SOCS3 knock-down in human osteoarthritic chondrocytes increased production of IL-1β-induced prostaglandin E2 , cell growth, transcript level and nuclear translocation of cyclin D1. Silencing of SOCS3 resulted in altered expression of nuclear factor-kappa-B (NF-κB) and cyclooxygenase (COX2). Our findings indicate that enhanced SOCS3 could have contradictory influences on OA development. SOCS3 might protect damaged joints by its anti-inflammatory effect and by inhibition of over-augmented cartilage tissue repair, which could exhibit inhibitory properties for joint inflammation, abnormal chondrocyte clustering and osteophyte formation in OA. On the other hand, SOCS3 might reduce chondrocyte growth response, which would delay repair of subchondral cancellous bone damage in OA owing to its anti-proliferation effect. The anti-inflammation and growth inhibition effects exhibited by enhanced SOCS3 in OA appear to be related to its capacity to down-regulate expression levels of NF-κB and COX2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app