Add like
Add dislike
Add to saved papers

TLR4 Promotes Breast Cancer Metastasis via Akt/GSK3β/β-Catenin Pathway upon LPS Stimulation.

Bacteria/virus-induced chronic inflammation is involved in both tumor initiation and tumor progression. Toll-like receptor 4 (TLR4) has been implicated in the development of several types of cancer. In this study, we explored the impact of TLR4 activation by lipopolysaccharide (LPS) on breast cancer metastasis and associated signaling molecules. We first examined TLR4 expression levels in breast tissue using a human breast tissue microarray and breast cell lines. We then studied the role of TLR4 activation by LPS stimulation in breast cancer metastasis using both in vitro and in vivo models. Finally, we investigated signaling molecules involved in the process using Western blotting and fluorescent immunohistochemistry staining. The results showed that TLR4 expression levels increased in breast cancer tissue compared to normal breast tissue. In addition, our results also showed that TLR4 pathway activation by LPS stimulation in MCF7 and MDA-MB-231 breast cancer cells caused the following actions: (1) promotes migration of breast cancer cells, (2) triggers the β-catenin signaling pathway via PI3K/Akt/GSK3β, and (3) promotes transcription of downstream β-catenin target genes leading to breast cancer metastasis. This study substantiates and further extends the relationship between TLR4 activation by LPS and breast cancer using both in vitro and in vivo models. The results suggest that the Akt/GSK3β/β-catenin signal transduction pathway may serve as a viable clinical treatment target in breast cancer. Anat Rec, 300:1219-1229, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app