Add like
Add dislike
Add to saved papers

Analysis of Nitroxide-Based Distance Measurements in Cell Extracts and in Cells by Pulsed ESR Spectroscopy.

Measurements of distances in cells by pulsed ESR spectroscopy afford tremendous opportunities to study proteins in native environments that are irreproducible in vitro. However, the in-cell environment is harsh towards the typical nitroxide radicals used in double electron-electron resonance (DEER) experiments. A systematic examination is performed on the loss of the DEER signal, including contributions from nitroxide decay and nitroxide side-chain cleavage. In addition, the possibility of extending the lifetime of the nitroxide radical by use of an oxidizing agent is investigated. Using this oxidizing agent, DEER distance measurements are performed on doubly nitroxide-labeled GB1, the immunoglobulin-binding domain of protein G, at varying incubation times in the cellular environment. It is found that, by comparison of the loss of DEER signal to the loss of the CW spectrum, cleavage of the nitroxide side chain contributes to the loss of DEER signal, which is significantly greater in cells than in cell extracts. Finally, local spin concentrations are monitored at varying incubation times to show the time required for molecular diffusion of a small globular protein within the cellular milieu.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app