Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Can we predict subject-specific dynamic cortical thickness maps during infancy from birth?

Understanding the early dynamic development of the human cerebral cortex remains a challenging problem. Cortical thickness, as one of the most important morphological attributes of the cerebral cortex, is a sensitive indicator for both normal neurodevelopment and neuropsychiatric disorders, but its early postnatal development remains largely unexplored. In this study, we investigate a key question in neurodevelopmental science: can we predict the future dynamic development of cortical thickness map in an individual infant based on its available MRI data at birth? If this is possible, we might be able to better model and understand the early brain development and also early detect abnormal brain development during infancy. To this end, we develop a novel learning-based method, called Dynamically-Assembled Regression Forest (DARF), to predict the development of the cortical thickness map during the first postnatal year, based on neonatal MRI features. We applied our method to 15 healthy infants and predicted their cortical thickness maps at 3, 6, 9, and 12 months of age, with respectively mean absolute errors of 0.209 mm, 0.332 mm, 0.340 mm, and 0.321 mm. Moreover, we found that the prediction precision is region-specific, with high precision in the unimodal cortex and relatively low precision in the high-order association cortex, which may be associated with their differential developmental patterns. Additional experiments also suggest that using more early time points for prediction can further significantly improve the prediction accuracy. Hum Brain Mapp 38:2865-2874, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app