Add like
Add dislike
Add to saved papers

Facilitating the performance of qNMR analysis using automated quantification and results verification.

Quantitative nuclear magnetic resonance (qNMR) is considered as a powerful tool for measuring the absolute amount of small molecules in complex mixtures. However, verification of the accuracy of such quantification is not a trivial task. In particular, preprocessing and integration steps are challenging and potentially erroneous. A script was developed in Matlab environment to automate qNMR analysis. Verification of the results is based on two evolving integration profiles. The analysis of binary mixtures of internal standards as well as pharmaceutical products has shown that all common artifacts (phase and baseline distortion, impurities) can be easily recognized in routine qNMR experiments. In the absence of distortion, deviation between automatically (mean value of several integrals) and manually calculated values was generally below 0.1%. The routine is independent of multiplet pattern, solvent, spectrometer, nuclei type and pulse sequence used. In general, the usage of the developed script can facilitate and verify results of routine qNMR analysis in an automatic manner. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app