Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna.

Lithium intercalation compounds such as lithium nickel manganese cobalt oxide (NMC) and lithium cobalt oxide (LCO) are used extensively in lithium batteries. Because there is currently little economic incentive for recycling, chances are greater that batteries will end up in landfills or waste in the environment. In addition, the toxicity of these battery materials traditionally has not been part of the design process. Therefore, to determine the environmental impact and the possibility of alternative battery materials, representative complex battery nanomaterials, LCO and NMC, were synthesized, and toxicity was assessed in Daphnia magna. Toxicity was determined by assessing LCO and NMC at concentrations in the range of 0.1 to 25 mg/L. Acute studies (48 h) showed no effect to daphnid survival at 25 mg/L, whereas chronic studies (21 d) show significant impacts to daphnid reproduction and survival at concentrations of 0.25 mg/L for LCO and 1.0 mg/L for NMC. Dissolved metal exposures showed no effect at the amounts measured in suspension, and supernatant controls could not reproduce the effects of the particles, indicating a nanomaterial-specific impact. Genes explored in the present study were actin, glutathione-s-transferase, catalase, 18s, metallothionein, heat shock protein, and vitellogenin. Down-regulation of genes important in metal detoxification, metabolism, and cell maintenance was observed in a dose-dependent manner. The results show that battery material chemical composition can be altered to minimize environmental impacts. Environ Toxicol Chem 2017;36:2493-2502. © 2017 SETAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app