JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Firth's logistic regression with rare events: accurate effect estimates and predictions?

Firth's logistic regression has become a standard approach for the analysis of binary outcomes with small samples. Whereas it reduces the bias in maximum likelihood estimates of coefficients, bias towards one-half is introduced in the predicted probabilities. The stronger the imbalance of the outcome, the more severe is the bias in the predicted probabilities. We propose two simple modifications of Firth's logistic regression resulting in unbiased predicted probabilities. The first corrects the predicted probabilities by a post hoc adjustment of the intercept. The other is based on an alternative formulation of Firth's penalization as an iterative data augmentation procedure. Our suggested modification consists in introducing an indicator variable that distinguishes between original and pseudo-observations in the augmented data. In a comprehensive simulation study, these approaches are compared with other attempts to improve predictions based on Firth's penalization and to other published penalization strategies intended for routine use. For instance, we consider a recently suggested compromise between maximum likelihood and Firth's logistic regression. Simulation results are scrutinized with regard to prediction and effect estimation. We find that both our suggested methods do not only give unbiased predicted probabilities but also improve the accuracy conditional on explanatory variables compared with Firth's penalization. While one method results in effect estimates identical to those of Firth's penalization, the other introduces some bias, but this is compensated by a decrease in the mean squared error. Finally, all methods considered are illustrated and compared for a study on arterial closure devices in minimally invasive cardiac surgery. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app