Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

IFN-γ directly inhibits murine B-cell precursor leukemia-initiating cell proliferation early in life.

The early-life immune environment has been implicated as a modulator of acute lymphoblastic leukemia (ALL) development in children, with infection being associated with significant changes in ALL risk. Furthermore, polymorphisms in several cytokine genes, including IL-10 and IFN-γ, are associated with leukemia development. However, the mechanisms and timing of these influences remain unknown. Here, we use the Eμ-ret transgenic mouse model of B-cell precursor ALL to assess the influence of IFN-γ on the early-life burden of leukemia-initiating cells. The absence of IFN-γ activity resulted in greater numbers of leukemia-initiating cells early in life and was associated with accelerated leukemia onset. The leukemia-initiating cells from IFN-γ-knockout mice had reduced suppressor of cytokine signaling (SOCS-1) expression, were significantly more sensitive to IFN-γ, and exhibited more rapid expansion in vivo than their wild-type counterparts. However, sensitivity to this inhibitory pathway was lost in fully transformed IFN-γ-knockout leukemia cells. These results demonstrate that the influence of IFN-γ on ALL progression may not be mediated by selection of nascent transformed cells but rather through a general SOCS-mediated reduction in B-cell precursor proliferation. Thus, while cytokine levels may influence leukemia at multiple points during disease progression, our study indicates a significant early influence of basal, infection-independent cytokine production on leukemogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app