Add like
Add dislike
Add to saved papers

An Efficient Chemoenzymatic Synthesis of Dihydroartemisinic Aldehyde.

Angewandte Chemie 2017 April 4
Artemisinin from the plant Artemisia annua is the most potent pharmaceutical for the treatment of malaria. In the plant, the sesquiterpene cyclase amorphadiene synthase, a cytochrome-dependent CYP450, and an aldehyde reductase convert farnesyl diphosphate (FDP) into dihydroartemisinic aldehyde (DHAAl), which is a key intermediate in the biosynthesis of artemisinin and a semisynthetic precursor for its chemical synthesis. Here, we report a chemoenzymatic process that is able to deliver DHAAl using only the sesquiterpene synthase from a carefully designed hydroxylated FDP derivative. This process, which reverses the natural order of cyclization of FDP and oxidation of the sesquiterpene hydrocarbon, provides a significant improvement in the synthesis of DHAAl and demonstrates the potential of substrate engineering in the terpene synthase mediated synthesis of high-value natural products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app