JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Localization of the Ethylene-Receptor Signaling Complex to the Endoplasmic Reticulum: Analysis by Two-Phase Partitioning and Density-Gradient Centrifugation.

Ethylene receptors and other elements of the ethylene-signal transduction pathway localize to membranes of the endoplasmic reticulum (ER). New players in the ethylene signaling pathway continue to be discovered and so it is important to have methods by which to diagnose their cellular localization. Two methods for microsome isolation and fractionation are described here that can assist in determining if a protein localizes to the ER: aqueous two-phase partitioning and equilibrium density-gradient centrifugation. Two-phase partitioning serves to purify plasma membrane away from other cellular membranes and can thus discriminate whether a protein is localized to the plasma membrane or not. Equilibrium density-gradient centrifugation is particularly useful for resolving if a protein is localized to the ER. Ribosomes are associated with the rough ER in the presence of Mg2+ but are stripped away when Mg2+ is removed from the medium, resulting in a reduction in the ER membrane density and a diagnostic shift in migration when analyzed by equilibrium density-gradient centrifugation. A method for growing plants in liquid culture is also provided because these microsomal membranes exhibit consistent fractionation by both two-phase partitioning and density-gradient centrifugation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app