Add like
Add dislike
Add to saved papers

A mild thermomechanical process for the enzymatic conversion of radiata pine into fermentable sugars and lignin.

BACKGROUND: Conversion of softwoods into sustainable fuels and chemicals is important for parts of the world where softwoods are the dominant forest species. While they have high theoretical sugar yields, softwoods are amongst the most recalcitrant feedstocks for enzymatic processes, typically requiring both more severe pretreatment conditions and higher enzyme doses than needed for other lignocellulosic feedstocks. Although a number of processes have been proposed for converting softwoods into sugars suitable for fuel and chemical production, there is still a need for a high-yielding, industrially scalable and cost-effective conversion route.

RESULTS: We summarise work leading to the development of an efficient process for the enzymatic conversion of radiata pine (Pinus radiata) into wood sugars. The process involves initial pressurised steaming of wood chips under relatively mild conditions (173 °C for 3-72 min) without added acid catalyst. The steamed chips then pass through a compression screw to squeeze out a pressate rich in solubilised hemicelluloses. The pressed chips are disc-refined and wet ball-milled to produce a substrate which is rapidly saccharified using commercially available enzyme cocktails. Adding 0.1% polyethylene glycol during saccharification was found to be particularly effective with these substrates, reducing enzyme usage to acceptable levels, e.g. 5 FPU/g OD substrate. The pressate is separately hydrolysed using acid, providing additional hemicellulose-derived sugars, for an overall sugar yield of 535 kg/ODT chips (76% of theoretical). The total pretreatment energy input is comparable to other processes, with the additional energy for attrition being balanced by a lower thermal energy requirement. This pretreatment strategy produces substrates with low levels of fermentation inhibitors, so the glucose-rich mainline and pressate syrups can be fermented to ethanol without detoxification. The lignin from the process remains comparatively unmodified, as evident from the level of retained β-ether interunit linkages, providing an opportunity for conversion into saleable co-products.

CONCLUSIONS: This process is an efficient route for the enzymatic conversion of radiata pine, and potentially other softwoods, into a sugar syrup suitable for conversion into fuels and chemicals. Furthermore, the process uses standard equipment that is largely proven at commercial scale, de-risking process scale-up.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app