Add like
Add dislike
Add to saved papers

Deleterious role of trace elements - Silica and lead in the development of chronic kidney disease.

Chemosphere 2017 June
Chronic-Kidney-Disease of Unknown-etiology (CKDu) has been reported in developing-countries like Sri-Lanka, India and Central-America without sparing the Indian sub-district (namely Canacona) located in south-Goa. The disease etiology is unlinked to common causes of diabetes and hypertension and assumed to be environmentally induced due to its asymptomatic-nature and occurrence in groundwater relying communities. This study aimed to understand environmental risk-factors underlying CKDu-etiology using Indian sub-district (Canacona) as case-study. Biochemical-analysis of CKDu-affected and non-affected individual's blood and detailed hydro-geochemical analyses of CKDu-affected and non-affected region's groundwater (drinking-water)were conducted. Trace geogenic-element-silica was highly dominant in affected-region's groundwater, thus its nephrotoxic-potential was analysed via in-vitro cytotoxicity-assays on human-kidney-cell-lines. All CKDu-affected-subjects showed increased-levels of serum-urea (52.85 mM),creatinine (941.5 μM),uric-acid (1384.5 μM), normal blood-glucose (4.65 mM), being distinct biomarkers of environmentally-induced CKD-'chronic-tubulo-interstitial-nephritis'. Affected-subjects reported high blood-lead levels (1.48 μM)suggesting direct-nephrotoxicity resulting in impaired blood-clearance and also exhibits indirect-nephrotoxicity by disrupting calcium-homeostasis causing skeletal-disorders and prolonged-consumption of NSAID's (pain-alleviation), indirectly causing renal-damage. Affected-region's groundwater was acidic (pH-5.6), resulting in borderline-lead (9.98 μgL-1 ) and high-silica (115.5 mgL-1 )contamination. Silica's bio-availability (determining its nephrotoxicity) was enhanced at groundwater's acidic-pH and Ca-Mg-deficient-composition (since these cations complex with silica reducing bioavailability). Silica exhibited renal-proximal-tubular-cytotoxicity on long-term exposure comparable with affected-region's groundwater silica-levels, by apoptosis-mediated-cell-death resulting in tubular-atrophy, interstitial-fibrosis and irreversible renal-damage (CKD). Thus this study provides novel-insights into nephrotoxic-potential of trace-geogenic-element-silica in CKDu causation. It highlights direct-indirect nephrotoxicity exhibited by lead at low-levels due to its bio-accumulative-capacity. Silica's nephrotoxic-potential can be considered when deciphering etiology of CKDu-problem in developing-countries (relying on groundwater).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app