Add like
Add dislike
Add to saved papers

Enantioselective Bioaccumulation, Tissue Distribution, and Toxic Effects of Myclobutanil Enantiomers in Pelophylax nigromaculatus Tadpole.

Research on the enantioselective behavior of chiral pesticides on amphibians has received growing attention, because amphibians are experiencing a population decline and amphibian metamorphosis shares many similarities with human fetal development. In this study, the enantioselective behavior of myclobutanil on Pelophylax nigromaculatus tadpole was studied. The antioxidant enzyme (SOD, GST) activities and malondialdehyde (MDA) content were investigated to assess the different toxic effects when tadpoles were exposed to myclobutanil enantiomers for 96 h. In the chronic exposure experiment, the bioaccumulation concentration of (-)-myclobutanil in tadpoles is significantly higher than that of (+)-myclobutanil, and the concentration of myclobutanil in tadpole intestine and liver was higher compared with other tissues. During the elimination experiment, about 95% of myclobutanil in tadpoles was eliminated within only 24 h. On the basis of these data, the enantiomeric differences should be taken into consideration in the risk assessment of myclobutanil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app