Add like
Add dislike
Add to saved papers

Cartilage suspension using a poly (lactic-co-glycolic) acid system.

BACKGROUND: This study aims to determine whether a bar-like implant made of poly lactic-co-glycolic acid (PLGA) could be used for cartilage suspension and whether the implant would be suitable for rhinoplasty.

METHODS: Three types of in vivo animal experiments were performed. First, the ear cartilage was incised in a full-thickness pattern, and the PLGA system was placed between the upper and lower cartilage to offer support to the tissue. Second, after the ear cartilage was forcibly bent, an implant was placed in the cartilage. For these rabbits, the outer aspect of the ear cartilage was assessed at 2, 4, 8, 10, and 12 weeks postoperatively. In addition, tissue samples were collected for histological evaluation 12 weeks after surgery. Third, the bar-like nasal implant was used for nasal septal suspension. We obtained micro-computed tomography (CT) images and evaluated the inflammatory reaction at 12 weeks postoperatively.

RESULTS: The results of both the ear suspension and bending retention tests revealed that the characteristic shapes of the cartilage were well preserved at 12 weeks postoperatively. Moreover, no abnormal inflammatory reaction was present in any site in the experimental group. We successfully implanted the bar-like nasal implant in the rabbit's septum, and no complications occurred. Furthermore, the physical examination and the micro-CT images did not reveal any nasal obstruction or inflammation.

CONCLUSIONS: We confirmed that an implant made of PLGA can be maintained in the cartilage tissue and believe that this can be applied in rhinoplasty as an alternative to autologous cartilage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app