Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Roux-en-Y gastric bypass improves glucose homeostasis, reduces oxidative stress and inflammation in livers of obese rats and in Kupffer cells via an AMPK-dependent pathway.

Surgery 2017 July
BACKGROUND: Oxidative stress and inflammation are implicated in the pathogenesis of steatohepatitis. We hypothesize that Roux-en-Y gastric bypass reduces oxidative stress and inflammation in the liver of obese rats via activation of AMPK-α.

METHODS: Obese Sprague-Dawley male rats underwent either sham operation or Roux-en-Y gastric bypass. Hepatic TNF-α, NF-κB, IRS-2, PI3 kinase, PKC-ζ, NOX2, and AMPK-α were measured. Mechanistic studies were done in a rat Kupffer cell line (RKC1) that was treated with free fatty acids to mimic lipotoxicity and then transfected with AMPK-α siRNA. Reactive oxygen species, TNF-α, NF-κB, AMPK-α, p-AMPK-α, PPAR-γ, and NOX2 were measured. A t test was used.

RESULTS: Roux-en-Y gastric bypass lowered nonfasting serum glucose, improved the glucose tolerance test, and induced IRS2/PI3 kinase interaction. Additionally, Roux-en-Y gastric bypass decreased hepatic NOX2, PKC-ζ, TNF-α expression and activation of NF-κB. Free fatty acids increased reactive oxygen species, TNF-α protein, NOX2 protein, and activated NF-κB. Rosiglitazone attenuated the free fatty acids-induced increase in reactive oxygen species, TNF-α, NOX2, and NF-κB; blocking AMPK-α by siRNA abolished the effects of rosiglitazone.

CONCLUSION: Roux-en-Y gastric bypass exhibits antidiabetic properties and is associated with downregulation of proinflammation genes and oxidative stress in the liver and within Kupffer cells via activation of AMPK-α.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app