Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment.

Biochemistry 2017 March 29
The epidermal growth factor receptor (EGFR) family is an important class of receptor tyrosine kinases, mediating a variety of cellular responses in normal biological processes and in pathological states of multicellular organisms. Different modes of dimerization of the human EGFR transmembrane domain (TMD) in different membrane mimetics recently prompted us to propose a novel signal transduction mechanism based on protein-lipid interaction. However, the experimental evidence for it was originally obtained with slightly different TMD fragments used in the two different mimetics, compromising the validity of the comparison. To eliminate ambiguity, we determined the nuclear magnetic resonance (NMR) structure of the bicelle-incorporated dimer of the EGFR TMD fragment identical to the one previously used in micelles. The NMR results augmented by molecular dynamics simulations confirm the mutual influence of the TMD and lipid environment, as is required for the proposed lipid-mediated activation mechanism. They also reveal the possible functional relevance of a subtle interplay between the concurrent processes in the lipid and protein during signal transduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app