Add like
Add dislike
Add to saved papers

Coordination-Controlled One-Dimensional Molecular Chains in Hexapodal Adenine-Silver Ultrathin Films.

Inorganic Chemistry 2017 April 4
Growth of a silver coordination polymer of a C3 -symmetric hexaadenine ligand is studied on highly oriented pyrolytic graphite (HOPG), using high-resolution atomic force microscopy (AFM). This unusual ligand offers 6-fold multidentate coordination sites, and consequently, a multidimensional growth of coordination polymer is expected. Notably, each discrete hexapodal unit is bridged by two silver ions along one of the crystallographic directions, resulting in high interaction energy along this direction. When the polymer was deposited on an HOPG surface from a dilute solution, we observed abundant one-dimensional (1D) coordination polymer chains, with a minimum width of approximately 4.5 nm. The single-crystal structure using X-ray analysis is compared with the surface patterns to reconcile and understand the structure of the 1D polymer on an HOPG surface. The energy levels of Ag-L1 within the proposed model were calculated, on the basis of the X-ray crystal structure, and compared to the ligand states to gain information about the electronic structure of ligand upon Ag coordination. On the basis of the wave functions of a few molecular orbitals (MOs) near the Fermi energy, it is surmised that unfilled MOs may play a crucial role in the transport properties of the Ag-L1 adlayer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app