Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

Meta-analysis on the effect of interventions used in cattle processing plants to reduce Escherichia coli contamination.

Cattle coming from feedlots to slaughter often harbor pathogenic E. coli that can contaminate final meat products. As a result, reducing pathogenic contamination during processing is a main priority. Unfortunately, food safety specialists face challenges when trying to determine optimal intervention strategies from published literature. Plant intervention literature results and methods vary significantly, making it difficult to implement interventions with any degree of certainty in their effectiveness. To create a more robust understanding of plant intervention effectiveness, a formal systematic literature review and meta-analysis was conducted on popular intervention methods. Effect size or intervention effectiveness was measured as raw log reduction, and modeled using study characteristics, such as intervention type, temperature of application, initial microbial concentration, etc. Least-squares means were calculated for intervention effectiveness separately on hide and on carcass surfaces. Heterogeneity between studies (I2 ) was assessed and factors influencing intervention effectiveness were identified. Least-squares mean reductions (log CFU/cm2 ) on carcass surfaces (n=249) were 1.44 [95% CI: 0.73-2.15] for acetic acid, 2.07 [1.48-2.65] for lactic acid, 3.09 [2.46-3.73] for steam vacuum, and 1.90 [1.33-2.47] for water wash. On hide surfaces (n=47), least-squares mean reductions were 2.21 [1.36-3.05] for acetic acid, 3.02 [2.16-3.88] for lactic acid, 3.66 [2.60-4.72] for sodium hydroxide, and 0.08 [-0.94-1.11] for water wash. Meta-regressions showed that initial microbial concentrations and timing of extra water washes were the most important predictors of intervention effectiveness. Unexplained variation remained high in carcass, hide, and lactic acid meta-regressions, suggesting that other significant moderators are yet to be identified. The results will allow plant managers and risk assessors to evaluate plant interventions, variation, and factors more effectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app