Add like
Add dislike
Add to saved papers

In vitro and in silico Studies of Mangiferin from Aphloia theiformis on Key Enzymes Linked to Diabetes Type 2 and Associated Complications.

BACKGROUND: Mangiferin, was identified in the crude methanol extract, ethyl acetate, and n-butanol fractions of Aphloia theiformis (Vahl.) Benn.

OBJECTIVE: This study aimed to analyze the plausible binding modes of mangiferin to key enzymes linked to diabetes type 2 (DT2), obesity, hypertension, Alzheimer's disease, and urolithiasis using molecular docking.

METHOD: Crystallographic structures of α-amylase, α-glucosidase, glycogen phosphorylase (GP), pancreatic lipase, cholesterol esterase (CEase), angiotensin-I-converting enzyme (ACE), acetyl cholinesterase (AChE), and urease available on the Protein Databank database were docked to mangiferin using Gold 6.0 software.

RESULTS: We showed that mangiferin bound to all enzymes by π-π and hydrogen bonds mostly. Mangiferin was docked to both allosteric and orthosteric sites of α-glucosidase by π-π interactions. However, several hydrogen bonds were observed at the orthosteric position, suggesting a preference for this site. The docking of mangiferin on AChE with the catalytic pocket occupied by paraoxon could be attributed to π-π stacking involving amino acid residues, Trp341 and Trp124.

CONCLUSION: This study provided an insight of the molecular interaction of mangiferin with the studied enzymes and can be considered as a valuable tool for designing new drugs for better management of these diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app