Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Substrate Recognition and Modification by a Pathogen-Associated Aminoglycoside Resistance 16S rRNA Methyltransferase.

The pathogen-associated 16S rRNA methyltransferase NpmA catalyzes m1 A1408 modification to block the action of structurally diverse aminoglycoside antibiotics. Here, we describe the development of a fluorescence polarization binding assay and its use, together with complementary functional assays, to dissect the mechanism of NpmA substrate recognition. These studies reveal that electrostatic interactions made by the NpmA β2/3 linker collectively are critical for docking of NpmA on a conserved 16S rRNA tertiary surface. In contrast, other NpmA regions (β5/β6 and β6/β7 linkers) contain several residues critical for optimal positioning of A1408 but are largely dispensable for 30S binding. Our data support a model for NpmA action in which 30S binding and adoption of a catalytically competent state are distinct: docking on 16S rRNA via the β2/3 linker necessarily precedes functionally critical 30S substrate-driven conformational changes elsewhere in NpmA. This model is also consistent with catalysis being completely positional in nature, as the most significant effects on activity arise from changes that impact binding or stabilization of the flipped A1408 conformation. Our results provide a molecular framework for aminoglycoside resistance methyltransferase action that may serve as a functional paradigm for related enzymes and a starting point for development of inhibitors of these resistance determinants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app