JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background.

Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific "signature" that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app