Add like
Add dislike
Add to saved papers

Ensemble Empirical Mode Decomposition With Principal Component Analysis: A Novel Approach for Extracting Respiratory Rate and Heart Rate From Photoplethysmographic Signal.

The photoplethysmographic (PPG) signal measures the local variations of blood volume in tissues, reflecting the peripheral pulse modulated by cardiac activity, respiration, and other physiological effects. Therefore, PPG can be used to extract the vital cardiorespiratory signals like heart rate (HR), and respiratory rate (RR) and this will reduce the number of sensors connected to the patient's body for recording these vital signs. In this paper, we propose an algorithm based on ensemble empirical mode decomposition with principal component analysis (EEMD-PCA) as a novel approach to estimate HR and RR simultaneously from PPG signal. To examine the performance of the proposed algorithm, we used 310 (from 35 subjects) and 632 (from 42 subjects) epochs of simultaneously recorded electrocardiogram, PPG, and respiratory signal extracted from MIMIC (Physionet ATM data bank) and Capnobase database, respectively. Results of EEMD-PCA-based extraction of HR and RR from PPG signal showed that the median RMS error (1st and 3rd quartiles) obtained in MIMIC data set for RR was 0.89 (0, 1.78) breaths/min, for HR was 0.57 (0.30, 0.71) beats/min and in Capnobase data set it was 2.77 (0.50, 5.9) breaths/min and 0.69 (0.54, 1.10) beats/min for RR and HR, respectively. These results illustrated that the proposed EEMD-PCA approach is more accurate in estimating HR and RR than other existing methods. Efficient and reliable extraction of HR and RR from the pulse oximeter's PPG signal will help patients for monitoring HR and RR with low cost and less discomfort.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app