Add like
Add dislike
Add to saved papers

DCT Regularized Extreme Visual Recovery.

Here we study the extreme visual recovery problem, in which over 90% of pixel values in a given image are missing. Existing low rank-based algorithms are only effective for recovering data with at most 90% missing values. Thus, we exploit visual data's smoothness property to help solve this challenging extreme visual recovery problem. Based on the discrete cosine transform (DCT), we propose a novel DCT regularizer that involves all pixels and produces smooth estimations in any view. Our theoretical analysis shows that the total variation regularizer, which only achieves local smoothness, is a special case of the proposed DCT regularizer. We also develop a new visual recovery algorithm by minimizing the DCT regularizer and nuclear norm to achieve a more visually pleasing estimation. Experimental results on a benchmark image data set demonstrate that the proposed approach is superior to the state-of-the-art methods in terms of peak signal-to-noise ratio and structural similarity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app