Add like
Add dislike
Add to saved papers

An Origami Perovskite Photodetector with Spatial Recognition Ability.

Flexible photodetectors are attracting substantial attention because of their promising applications in bendable display and smart clothes which cannot be fulfilled by the existing rigid counterparts. In this work, we demonstrate a newly designed photodetector constructed on the common printing paper. Pencil trace was applied as the graphite electrode. With such a simple and convenient method, the as-prepared photodetector exhibited a satisfactory responsivity of 4.4 mA/W, on/off current ratio of 32, coupled with a high response speed of <10 ms. It also demonstrated excellent mechanical flexibility and durability. Most inspiringly, by an ingenious origami, we created the first perovskite photodetector with a 3D configuration. The cubic photodetector array displayed an excellent spatial recognition ability which could not be achieved in all the previously reported 2D photodetectors. Such a fusion of materials science and the art of origami provides a robust strategy for the design of low-cost flexible electronics, especially for the applications in 3D configurations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app