JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Targeted Plasma Membrane Delivery of a Hydrophobic Cargo Encapsulated in a Liquid Crystal Nanoparticle Carrier.

The controlled delivery of drug/imaging agents to cells is critical for the development of therapeutics and for the study of cellular signaling processes. Recently, nanoparticles (NPs) have shown significant promise in the development of such delivery systems. Here, a liquid crystal NP (LCNP)-based delivery system has been employed for the controlled delivery of a water-insoluble dye, 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), from within the NP core to the hydrophobic region of a plasma membrane bilayer. During the synthesis of the NPs, the dye was efficiently incorporated into the hydrophobic LCNP core, as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) enabled the binding of the dye-loaded NPs to the plasma membrane in HEK 293T/17 cells. Time-resolved laser scanning confocal microscopy and Förster resonance energy transfer (FRET) imaging confirmed the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer. Finally, the delivery of DiO as a LCNP-PEG-Chol attenuated the cytotoxicity of DiO; the NP form of DiO exhibited ~30-40% less toxicity compared to DiOfree delivered from bulk solution. This approach demonstrates the utility of the LCNP platform as an efficient modality for the membrane-specific delivery and modulation of hydrophobic molecular cargos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app