Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Intracarotid Cancer Cell Injection to Produce Mouse Models of Brain Metastasis.

Metastasis, the spread and growth of malignant cells at secondary sites within a patient's body, accounts for > 90% of cancer-related mortality. Recently, impressive advances in novel therapies have dramatically prolonged survival and improved quality of life for many cancer patients. Sadly, incidence of brain metastatic recurrences is fast rising, and all current therapies are merely palliative. Hence, good experimental animal models are urgently needed to facilitate in-depth studies of the disease biology and to assess novel therapeutic regimens for preclinical evaluation. However, the standard in vivo metastasis assay via tail vein injection of cancer cells produces predominantly lung metastatic lesions; animals usually succumb to the lung tumor burden before any meaningful outgrowth of brain metastasis. Intracardiac injection of tumor cells produces metastatic lesions to multiple organ sites including the brain; however, the variability of tumor growth produced with this model is large, dampening its utility in evaluating therapeutic efficacy. To generate reliable and consistent animal models for brain metastasis study, here we describe a procedure for producing experimental brain metastasis in the house mouse (Mus musculus) via intracarotid injection of tumor cells. This approach allows one to produce large number of brain metastasis-bearing mice with similar growth and mortality characteristics, thus facilitating research efforts to study basic biological mechanisms and to assess novel therapeutic agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app