JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Dynamic Pore-scale Reservoir-condition Imaging of Reaction in Carbonates Using Synchrotron Fast Tomography.

Underground storage permanence is a major concern for carbon capture and storage. Pumping CO2 into carbonate reservoirs has the potential to dissolve geologic seals and allow CO2 to escape. However, the dissolution processes at reservoir conditions are poorly understood. Thus, time-resolved experiments are needed to observe and predict the nature and rate of dissolution at the pore scale. Synchrotron fast tomography is a method of taking high-resolution time-resolved images of complex pore structures much more quickly than traditional µ-CT. The Diamond Lightsource Pink Beam was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. The images were segmented and the porosity and permeability were measured using image analysis and network extraction. Porosity increased uniformly along the length of the sample; however, the rate of increase of both porosity and permeability slowed at later times.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app