Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Ultrasound-based Pulse Wave Velocity Evaluation in Mice.

Arterial stiffness can be evaluated by calculating pulse wave velocity (PWV), i.e., the speed with which the pulse wave travels in a conduit vessel. This parameter is being increasingly investigated in small rodent models in which it is used for assessing alterations in vascular function related to particular genotypes/treatments or for characterizing cardiovascular disease progression. This protocol describes an image processing algorithm which leads to non-invasive arterial PWV measurement in mice using ultrasound (US) images only. The proposed technique has been used to assess abdominal aorta PWV in mice and evaluate its age-associated changes. Abdominal aorta US scans are obtained from mice under gaseous anesthesia using a specific US device equipped with high-frequency US probes. B-mode and Pulse-Wave Doppler (PW-Doppler) images are analyzed in order to obtain diameter and mean velocity instantaneous values, respectively. For this purpose, edge detection and contour tracking techniques are employed. The single-beat mean diameter and velocity waveforms are time aligned and combined in order to achieve the diameter-velocity (lnD-V) loop. PWV values are obtained from the slope of the linear part of the loop, which corresponds to the early systolic phase. With the present approach, anatomical and functional information about the mouse abdominal aorta can be non-invasively achieved. Requiring the processing of US images only, it may represent a useful tool for the non-invasive characterization of different arterial sites in the mouse in terms of elastic properties. The application of the present technique can be easily extended to other vascular districts, such as the carotid artery, thus providing the possibility to obtain a multi-site arterial stiffness assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app