Add like
Add dislike
Add to saved papers

NMR-Based Lipid Profiling of High Density Lipoprotein Particles in Healthy Subjects with Low, Normal, and Elevated HDL-Cholesterol.

Recent studies suggest that the cholesterol content of HDL (high density lipoproteins) may provide limited information on their antiatherogenic properties and that the composition and particles' structure provide more information on their functionality. We used NMR-based (nuclear magnetic resonance-based) lipidomics to study the relationships of serum HDL-C (HDL-cholesterol) levels with the lipid composition of HDL particles in three groups of subjects selected on the basis of their HDL-C levels. Subjects with low and high HDL-C levels exhibited differences in HDL lipidome compared to those with normal HDL-C levels. In pattern recognition analysis, the discrimination power among all groups was of high significance. The low HDL-C group presented enrichment of the core in triglycerides and depletion in cholesterol esters, whereas the high HDL-C group showed a decrease in triglycerides content. Additionally, as HDL-C increases, all lipid classes are esterified with higher percentage of unsaturated than saturated fatty acids. In addition to the aforementioned differences, the surface layer is enriched in sphingomyelin and free cholesterol in the high HDL-C level group. NMR-based lipidomic analysis of HDL can be particularly useful since it provides insights into molecular features and helps in the characterization of the atheroprotective function of HDL lipoproteins and in the identification of novel biomarkers of cardiovascular risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app