Clinical Trial
Journal Article
Multicenter Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue.

Scientific Reports 2017 March 14
In comparison to genome-wide association studies (GWAS), there has been poor replication of gene expression studies in chronic obstructive pulmonary disease (COPD). We performed microarray gene expression profiling on a large sample of resected lung tissues from subjects with severe COPD. Comparing 111 COPD cases and 40 control smokers, 204 genes were differentially expressed; none were at significant GWAS loci. The top differentially expressed gene was HMGB1, which interacts with AGER, a known COPD GWAS gene. Differentially expressed genes showed enrichment for putative interactors of the first three identified COPD GWAS genes IREB2, HHIP, and FAM13A, based on gene sets derived from protein and RNA binding studies, RNA-interference, a murine smoking model, and expression quantitative trait locus analyses. The gene module most highly associated for COPD in Weighted Gene Co-Expression Network Analysis (WGCNA) was enriched for B cell pathways, and shared seventeen genes with a mouse smoking model and twenty genes with previous emphysema studies. As in other common diseases, genes at COPD GWAS loci were not differentially expressed; however, using a combination of network methods, experimental studies and careful phenotype definition, we found differential expression of putative interactors of these genes, and we replicated previous human and mouse microarray results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app