Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

miR-181d/MALT1 regulatory axis attenuates mesenchymal phenotype through NF-κB pathways in glioblastoma.

Cancer Letters 2017 June 29
The mesenchymal (MES) subtype of glioblastoma (GBM) indicated a more malignant phenotype and worse prognosis compared with their proneural (PN) counterpart. The plasticity between PN and MES transcriptome signatures provided an approach for clinical intervention. However, few miRNAs have been identified to participate in the shift between subtypes. Here, we utilized transcriptomic data and experimental evidences to prove that miR-181d was a novel regulator of NFκB signaling pathway by directly repressing MALT1, leading to induced PN markers and reduced MES genes. Functionally, ectopic expression of miR-181d suppressed GBM cell proliferation, colony formation and anchor-independent growth, as well as migration, invasion and tube formation. Moreover, miR-181d overexpression increased radio- and chemo-sensitivity for GBM cells. Rescue of MALT1 could partially reverse the effects of miR-181d in GBM malignant behaviors. Clinically, miR-181d could serve as a prognostic indicator for GBM patients. Taken together, we concluded that loss of miR-181d contributes to aggressive biological processes associated with MES phenotype via NFκB signaling, which broaden our insights into the underlying mechanisms in subtype transition and miRNA-based tailored medicine for GBM management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app