JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Altered gene expression in late-onset Alzheimer's disease due to SNPs within 3'UTR microRNA response elements.

Genomics 2017 July
Late-onset Alzheimer's disease (LOAD) is a progressive and fatal neurodegenerative disease found in people older than 65years of age. Disease etiology is complex, as susceptibility has been linked to multiple gene variants conferred by single nucleotide polymorphisms (SNPs). However, the molecular mechanisms by which SNPs contribute to LOAD pathogenesis have not been extensively studied, particularly for SNPs within the 3' untranslated regions (3'UTRs), the hubs for microRNA binding. Therefore, we screened for SNPs within the 3'UTRs of LOAD-associated genes that may create or destroy microRNA response elements (MREs) and thus alter gene expression. This investigation adopted an in-silico approach that integrated structural and thermodynamic features of miRNA target binding with screening using CLIP-seq data, followed by network analysis. This strategy identified three 3'UTR SNPs, rs10876135, rs5848, and rs5786996 that may alter the respective binding sites for the miRNAs hsa-miR-197-5p, hsa-miR-185-5p, and hsa-miR-34a-5p, all of which are upregulated in LOAD. The functional significance of these MRE-SNPs was assessed by potential regulation of biological networks known to be associated with LOAD. This is the first study to demonstrate a possible role for above 3'UTR MRE-SNPs in aberrant expression of target genes with functional consequences for LOAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app