JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hypoxia during embryonic development increases energy metabolism in normoxic juvenile chicks.

Environmental changes during perinatal development can affect the postnatal life. In this sense, chicken embryos that experience low levels of O2 over a specific phase of incubation can have their tissue growth reduced and the ventilatory response to hypoxia blunted, at least until hatching. Additionally, exposure to low level of O2 after birth reduces the thermogenesis as well. In the present study, we tested the hypothesis that hypoxia over the third week of incubation affects the thermoregulation of juvenile chicks at an age when thermogenesis is already expected to be well-developed. To this end, we measured body temperature (Tb) and oxygen consumption (V̇02 ) under acute hypoxia or different ambient temperatures (Ta) of 1 and 10day-old chicks that have been exposed to 21% O2 for entire incubation (Nx) or to 15% O2 in the last week of incubation (Hx). We also assessed the thermal preference under normoxia or acute hypoxia of the older chicks from both incubation groups in a thermocline. Hypoxia over incubation reduced growth but did not affect the cold-induced thermogenesis in hatchlings. Regarding the juvenile Hx, present data indicate a catch up growth with higher resting V̇02 , a thermal preference for warmer Tas and a possible higher thermal conductance. In conclusion, our results show that hypoxia over the third week of incubation can affect the thermoregulation at least until 10days after hatch in chickens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app