Add like
Add dislike
Add to saved papers

Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China.

Responses of soil respiration (Rs ) to increasing nitrogen (N) deposition and warming will have far-reaching influences on global carbon (C) cycling. However, the seasonal (growing and non-growing seasons) difference of Rs responses to warming and N deposition has rarely been investigated. We conducted a field manipulative experiment in a semi-arid alfalfa-pasture of northwest China to evaluate the response of Rs to nitrogen addition and warming from March 2014 to March 2016. Open-top chambers were used to elevate temperature and N was enriched at a rate of 4.42g m-2 yr-1 with NH4 NO3 . Results showed that (1) N addition increased Rs by 14% over the two-year period; and (2) warming stimulated Rs by 15% in the non-growing season, while inhibited it by 5% in the growing season, which can be explained by decreased plant coverage and soil water. The main effect of N addition did not change with time, but that of warming changed with time, with the stronger inhibition observed in the dry year. When N addition and warming were combined, an antagonistic effect was observed in the growing season, whereas a synergism was observed in the non-growing season. Overall, warming and N addition did not affect the Q10 values over the two-year period, but these treatments significantly increased the Q10 values in the growing season compared with the control treatment. In comparison, combined warming and nitrogen addition significantly reduced the Q10 values compared with the single factor treatment. These results suggest that the negative indirect effect of warming-induced water stress overrides the positive direct effect of warming on Rs . Our results also imply the necessity of considering the different Rs responses in the growing and non-growing seasons to climate change to accurately evaluate the carbon cycle in the arid and semi-arid regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app