Add like
Add dislike
Add to saved papers

Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database.

The demand for new therapies has encouraged the development of faster and cheaper methods of drug design. Considering the number of potential biological targets for new drugs, the docking-based virtual screening (DBVS) approach has occupied a prominent role among modern strategies for identifying new bioactive substances. Some tools have been developed to validate docking methodologies and identify false positives, such as the receiver operating characteristic (ROC) curve. In this context, a database with 31 molecular targets called the Our Own Molecular Targets Data Bank (OOMT) was validated using the root-mean-square deviation (RMSD) and the area under the ROC curve (AUC) with two different docking methodologies: AutoDock Vina and DOCK 6. Sixteen molecular targets showed AUC values of >0.8, and those targets were selected for molecular docking studies. The drug-likeness properties were then determined for 473 Brazilian natural compounds that were obtained from the ZINC database. Ninety-six compounds showed similar drug-likeness property values to the marked drugs (positive values). These compounds were submitted to DBVS for 16 molecular targets. Our results showed that AutoDock Vina was more appropriate than DOCK 6 for performing DBVS experiments. Furthermore, this work suggests that three compounds-ZINC13513540, ZINC06041137, and ZINC1342926-are inhibitors of the three molecular targets 1AGW, 2ZOQ, and 3EYG, respectively, which are associated with cancer. Finally, since ZINC and the PDB were solely created to store biomolecule structures, their utilization requires the application of filters to improve the first steps of the drug development process. Graphical Abstract Evaluation of docking methods used for virtual screening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app