Add like
Add dislike
Add to saved papers

Fosfomycin and Comparator Activity Against Select Enterobacteriaceae, Pseudomonas, and Enterococcus Urinary Tract Infection Isolates from the United States in 2012.

INTRODUCTION: Fosfomycin is a broad-spectrum cell wall active agent that inhibits the MurA enzyme involved in peptidoglycan synthesis and is FDA-approved for treatment of uncomplicated urinary tract infections (UTIs) caused by Escherichia coli and Enterococcus faecalis in women. Data regarding the susceptibility of recent UTI isolates to fosfomycin are limited.

METHODS: This study compared the fosfomycin susceptibility of 658 US UTI isolates with susceptibility to ciprofloxacin, levofloxacin, nitrofurantoin, and trimethoprim/sulfamethoxazole (SXT). Isolates included E. coli (n = 257), Klebsiella spp. (n = 156), Enterobacter spp. (n = 79), Pseudomonas aeruginosa (n = 60), E. faecalis (n = 54), and Proteus spp. (n = 52). Extended-spectrum β-lactamase (ESBL)-producing E. coli, Klebsiella spp., and Proteus mirabilis, ceftazidime-nonsusceptible P. aeruginosa and Enterobacter spp., and vancomycin-nonsusceptible E. faecalis were included.

RESULTS: Overall, the minimum concentration inhibiting 50% of isolates (MIC50) and 90% of isolates (MIC90) for fosfomycin were 4 and 64 µg/mL, respectively. Of the 257 E. coli isolates, 99.6% were susceptible to fosfomycin. Ciprofloxacin, levofloxacin, SXT, and nitrofurantoin susceptibility rates were 65.4%, 65.8%, 59.9%, and 90.3%, respectively. The fosfomycin-susceptibility rate for E. faecalis (94.4%) was comparable with the nitrofurantoin-susceptibility rate (98.1%). Among the 144 ESBL-producing isolates, the fosfomycin MIC50 and MIC90 values were 2 and 32 µg/mL, respectively. Fosfomycin MIC50 and MIC90 values were 16 and 128 µg/mL for the 38 ceftazidime-nonsusceptible Enterobacter isolates and 64 and 128 µg/mL for the 15 ceftazidime-nonsusceptible P. aeruginosa isolates, respectively.

CONCLUSION: These results demonstrate that fosfomycin has in vitro activity against many US UTI isolates, including drug-resistant isolates, and may provide another therapeutic option for treatment of UTIs caused by antibiotic-resistant pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app