Add like
Add dislike
Add to saved papers

Engineered particles demonstrate improved flow properties at elevated drug loadings for direct compression manufacturing.

Optimizing powder flow and compaction properties are critical for ensuring a robust tablet manufacturing process. The impact of flow and compaction properties of the active pharmaceutical ingredient (API) becomes progressively significant for higher drug load formulations, and for scaling up manufacturing processes. This study demonstrated that flow properties of a powder blend can be improved through API particle engineering, without critically impacting blend tabletability at elevated drug loadings. In studying a jet milled API (D50=24μm) and particle engineered wet milled API (D50=70μm and 90μm), flow functions of all API lots were similarly poor despite the vast difference in average particle size (ffc<4). This finding strays from the common notion that powder flow properties are directly correlated to particle size distribution. Upon adding excipients, however, clear trends in flow functions based on API particle size were observed. Wet milled API blends had a much improved flow function (ffc>10) compared with the jet milled API blends. Investigation of the compaction properties of both wet and jet milled powder blends also revealed that both jet and wet milled material produced robust tablets at the drug loadings used. The ability to practically demonstrate this uncommon observation that similarly poor flowing APIs can lead to a marked difference upon blending is important for pharmaceutical development. It is especially important in early phase development during API selection, and is advantageous particularly when material-sparing techniques are utilized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app