JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Strain specificities in cellular and molecular immunopathogenic mechanisms underlying development of experimental autoimmune encephalomyelitis in aged rats.

To understand strain-specificities of immune system in aged rats and their immunopathological implications, CD4+ T lymphocyte-mediated neuroinflammation in experimental autoimmune encephalomyelitis (EAE) was studied in two strains. Upon immunization for EAE, 22-24-month-old Albino Oxford (AO) rats developed milder neurological deficit of prolonged duration compared with their Dark Agouti (DA) counterparts. Consistently, they exhibited: (i) diminished neuroantigen-specific CD4+ T lymphocyte generation in draining lymph nodes (reflecting lower density of high-affinity IL-2 receptor complex on their surface and higher CD4+FoxP3+CD25+ regulatory cell frequency); (ii) less favorable spinal cord expression of CXCL12 and CCL2, and consequently diminished infiltration of neuroantigen-specific CD4+ T lymphocytes, including highly pathogenic IL-17+IFN-γ+ ones, and inflammatory monocytes into the spinal cord and (iii) subsequently impaired CD4+ T lymphocyte reactivation/survival and differentiation into highly pathogenic IL-17+ cells (reflecting downregulated expression of IL-1β, IL-6 and IL-23/p19). On the other hand, when the neurological deficit reached maximum/plateau, in AO rat spinal cord was found lower CD4+FoxP3+CD25+ cell frequency followed by higher frequency of IL-10-producing CD8+ T cells, which most likely also belong to regulatory T lymphocytes. Thus, the altered relation between regulatory T cell and effector CD4+ T cell subsets was linked with persistence of mild neuroinflammation in AO rat EAE model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app