Add like
Add dislike
Add to saved papers

Microbial community changes during different empty bed residence times and operational fluctuations in an air diffusion reactor for odor abatement.

The succession of bacterial and fungal populations was assessed in an activated sludge (AS) diffusion bioreactor treating a synthetic malodorous emission containing H2 S, toluene, butanone and alpha-pinene. Microbial community characteristics (bacterial and fungal diversity, richness, evenness and composition) and bioreactor function relationships were evaluated at different empty bed residence times (EBRTs) and after process fluctuations and operational failures (robustness test). For H2 S, butanone and toluene, the bioreactor showed a stable and efficient abatement performance regardless of the EBRT and fluctuations applied, while low alpha-pinene removals were observed. While no clear positive or negative relationship between community characteristics and bioreactor functions was observed, ecological parameters such as evenness and community dynamics seemed to be of importance for maintaining reactor stability. The optimal degree of evenness of the inoculum likely contributed to the high robustness of the system towards the fluctuations imposed. Actinobacteria, Proteobacteria and Fungi (Hypocreales, Chaeatothyriales) were the most abundant groups retrieved from the AS system with a putative key role in the degradation of butanone and toluene. Typical H2 S and alpha-pinene degraders were not retrieved from the system. The inoculation of P. fluorescens, a known alpha-pinene degrader, to the system did not result in the enhancement of the degradation of this compound. This strain was likely outcompeted by the microorganisms already adapted to the AS environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app